Macrophage immunomodulation by breast cancer-derived exosomes requires Toll-like receptor 2-mediated activation of NF-κB
نویسندگان
چکیده
Growing evidence links tumor progression with chronic inflammatory processes and dysregulated activity of various immune cells. In this study, we demonstrate that various types of macrophages internalize microvesicles, called exosomes, secreted by breast cancer and non-cancerous cell lines. Although both types of exosomes targeted macrophages, only cancer-derived exosomes stimulated NF-κB activation in macrophages resulting in secretion of pro-inflammatory cytokines such as IL-6, TNFα, GCSF, and CCL2. In vivo mouse experiments confirmed that intravenously injected exosomes are efficiently internalized by macrophages in the lung and brain, which correlated with upregulation of inflammatory cytokines. In mice bearing xenografted human breast cancers, tumor-derived exosomes were internalized by macrophages in axillary lymph nodes thereby triggering expression of IL-6. Genetic ablation of Toll-like receptor 2 (TLR2) or MyD88, a critical signaling adaptor in the NF-κB pathway, completely abolished the effect of tumor-derived exosomes. In contrast, inhibition of TLR4 or endosomal TLRs (TLR3/7/8/9) failed to abrogate NF-κB activation by exosomes. We further found that palmitoylated proteins present on the surface of tumor-secreted exosomes contributed to NF-κB activation. Thus, our results highlight a novel mechanism used by breast cancer cells to induce pro-inflammatory activity of distant macrophages through circulating exosomal vesicles secreted during cancer progression.
منابع مشابه
Lung tumor exosomes induce a pro-inflammatory phenotype in mesenchymal stem cells via NFκB-TLR signaling pathway.
BACKGROUND In tumor microenvironment, a continuous cross-talk between cancer cells and other cellular components is required to sustain tumor progression. Accumulating evidence suggests that exosomes, a novel way of cell communication, play an important role in such cross-talk. Exosomes could facilitate the direct intercellular transfer of proteins, lipids, and miRNA/mRNA/DNAs between cells. Si...
متن کاملUbiquitin-Specific Protease 14 Negatively Regulates Toll-Like Receptor 4-Mediated Signaling and Autophagy Induction by Inhibiting Ubiquitination of TAK1-Binding Protein 2 and Beclin 1
Ubiquitin-specific protease 14 (USP14), one of three proteasome-associated deubiquitinating enzymes, has multifunctional roles in cellular context. Here, we report a novel molecular mechanism and function of USP14 in regulating autophagy induction and nuclear factor-kappa B (NF-κB) activation induced by toll-like receptor (TLR) 4 (TLR4). USP14 interacted with tumor necrosis factor (TNF) recepto...
متن کاملToxoplasma gondii excretory/secretory antigens (TgESAs) suppress pro-inflammatory cytokine secretion by inhibiting TLR-induced NF-κB activation in LPS-stimulated murine macrophages
Excretory/secretory antigens (ESAs) produced by Toxoplasma gondii enable this parasite to invade and survive within the host cells through immunomodulation. In this study, the modulating effects of T. gondii excretory/secretory antigens (TgESAs) on the Ana-1 murine macrophage cell line were evaluated. Ana-1 cells were incubated with several concentrations of TgESAs, and the resulting effects on...
متن کاملEpstein-Barr Virus Encoded dUTPase Containing Exosomes Modulate Innate and Adaptive Immune Responses in Human Dendritic Cells and Peripheral Blood Mononuclear Cells
We have recently demonstrated that Epstein-Barr virus (EBV)-encoded deoxyuridine triphosphate nucleotidohydrolase (dUTPase) modulates innate immunity in human primary monocyte-derived macrophages through toll-like receptor (TLR) 2 leading to NF-κB activation and the production of pro-inflammatory cytokines. Our previous depletion studies indicated that dendritic cells (DCs) may also be a target...
متن کاملInterplay between Inflammation and Stemness in Cancer Cells: The Role of Toll-Like Receptor Signaling
Cancer stem cells (CSCs) are a small population of cancer cells that exhibit stemness. These cells contribute to cancer metastasis, treatment resistance, and relapse following therapy; therefore, they may cause malignancy and reduce the success of cancer treatment. Nuclear factor kappa B- (NF-κB-) mediated inflammatory responses increase stemness in cancer cells, and CSCs constitutively exhibit...
متن کامل